Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Athl Train ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: covidwho-2286816

RESUMEN

CONTEXT: The abrupt cessation of school and sport participation during the COVID-19 pandemic may have negative implications for adolescent mental health. OBJECTIVE: (1) To compare mental, physical, and social health and behaviors during pandemic-related stay-at-home mandates with the same measures collected 1-2 years prior. (2) To assess the relationship of physical activity and sleep during the pandemic with anxiety, fatigue, and peer relationship changes between assessment timepoints. DESIGN: Prospective cohort study, repeated-measures. SETTING: Pediatric sports medicine center. PARTICIPANTS: High school athletes (n=39; 16.2±0.9 years of age; 64% female). MAIN OUTCOME MEASURES: Patient Reported Outcome Measurement System (PROMIS) anxiety, fatigue, and peer relationships short forms and the Pittsburgh Sleep Quality Index (PSQI) were completed at two timepoints (initial assessment: May 2018 or 2019; follow-up assessment: May/June 2020). Physical activity frequency and duration, and frequency of interaction with other individuals (family, peers, sport coaches, etc.), were self-reported at follow-up assessment for the two weeks prior to school/sport closure and the two weeks prior to questionnaire completion. RESULTS: Higher levels of anxiety (5.5±4.0 vs. 3.6±3.4; p=0.003) and fatigue (5.4±3.7 vs. 2.3±2.5; p<0.001), and worse sleep quality (6.6±2.9 vs. 4.3±2.3; p<0.001) were observed during the pandemic compared to previous assessments. Reductions in physical activity were observed between assessments (exercise duration: 86.4±41.0 vs 53.8±30.0 minutes). Sleep quality, but not physical activity, during the pandemic predicted changes in fatigue (p = 0.03, ß = 0.44 [0.06, 0.83]) and peer relationships (p = 0.01, ß = -0.65 [-1.16, -0.15]) from initial to follow-up assessment. CONCLUSIONS: Mental and physical health declined during stay-at-home mandates, compared to assessments 1-2 years earlier. Physical activity behaviors and sources of social interaction underwent significant changes following school and sport cessation. Quality sleep may provide some protection against declining adolescent mental health during the pandemic, although this relationship requires further investigation.

2.
EBioMedicine ; 90: 104545, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: covidwho-2248476

RESUMEN

BACKGROUND: The Omicron era of the COVID-19 pandemic commenced at the beginning of 2022 and whilst it started with primarily BA.1, it was latter dominated by BA.2 and the related sub-lineage BA.5. Following resolution of the global BA.5 wave, a diverse grouping of Omicron sub-lineages emerged derived from BA.2, BA.5 and recombinants thereof. Whilst emerging from distinct lineages, all shared similar changes in the Spike glycoprotein affording them an outgrowth advantage through evasion of neutralising antibodies. METHODS: Over the course of 2022, we monitored the potency and breadth of antibody neutralization responses to many emerging variants in the Australian community at three levels: (i) we tracked over 420,000 U.S. plasma donors over time through various vaccine booster roll outs and Omicron waves using sequentially collected IgG pools; (ii) we mapped the antibody response in individuals using blood from stringently curated vaccine and convalescent cohorts. (iii) finally we determine the in vitro efficacy of clinically approved therapies Evusheld and Sotrovimab. FINDINGS: In pooled IgG samples, we observed the maturation of neutralization breadth to Omicron variants over time through continuing vaccine and infection waves. Importantly, in many cases, we observed increased antibody breadth to variants that were yet to be in circulation. Determination of viral neutralization at the cohort level supported equivalent coverage across prior and emerging variants with isolates BQ.1.1, XBB.1, BR.2.1 and XBF the most evasive. Further, these emerging variants were resistant to Evusheld, whilst increasing neutralization resistance to Sotrovimab was restricted to BQ.1.1 and XBF. We conclude at this current point in time that dominant variants can evade antibodies at levels equivalent to their most evasive lineage counterparts but sustain an entry phenotype that continues to promote an additional outgrowth advantage. In Australia, BR.2.1 and XBF share this phenotype and, in contrast to global variants, are uniquely dominant in this region in the later months of 2022. INTERPRETATION: Whilst the appearance of a diverse range of omicron lineages has led to primary or partial resistance to clinically approved monoclonal antibodies, the maturation of the antibody response across both cohorts and a large donor pools importantly observes increasing breadth in the antibody neutralisation responses over time with a trajectory that covers both current and known emerging variants. FUNDING: This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (SGT, GM & WDR), Medical Research Future Fund Antiviral Development Call grant (WDR), the New South Wales Health COVID-19 Research Grants Round 2 (SGT & FB) and the NSW Vaccine Infection and Immunology Collaborative (VIIM) (ALC). Variant modeling was supported by funding from SciLifeLab's Pandemic Laboratory Preparedness program to B.M. (VC-2022-0028) and by the European Union's Horizon 2020 research and innovation programme under grant agreement no. 101003653 (CoroNAb) to B.M.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Pandemias/prevención & control , COVID-19/prevención & control , Australia/epidemiología , Anticuerpos Neutralizantes , Inmunoglobulina G , Anticuerpos Antivirales
3.
Viruses ; 15(2)2023 02 13.
Artículo en Inglés | MEDLINE | ID: covidwho-2240763

RESUMEN

Australia experienced widespread COVID-19 outbreaks from infection with the SARS-CoV-2 Delta variant between June 2021 and February 2022. A 17-nucleotide frameshift-inducing deletion in ORF7a rapidly became represented at the consensus level (Delta-ORF7aΔ17del) in most Australian outbreak cases. Studies from early in the COVID-19 pandemic suggest that frameshift-inducing deletions in ORF7a do not persist for long in the population; therefore, Delta-ORF7aΔ17del genomes should have disappeared early in the Australian outbreak. In this study, we conducted a retrospective analysis of global Delta genomes to characterise the dynamics of Delta-ORF7aΔ17del over time, determined the frequency of all ORF7a deletions worldwide, and compared global trends with those of the Australian Delta outbreak. We downloaded all GISAID clade GK Delta genomes and scanned them for deletions in ORF7a. For each deletion we identified, we characterised its frequency, the number of countries it was found in, and how long it persisted. Of the 4,018,216 Delta genomes identified globally, 134,751 (~3.35%) possessed an ORF7a deletion, and ORF7aΔ17del was the most common. ORF7aΔ17del was the sole deletion in 28,014 genomes, of which 27,912 (~99.6%) originated from the Australian outbreak. During the outbreak, ~87% of genomes were Delta-ORF7aΔ17del, and genomes with this deletion were sampled until the outbreak's end. These data demonstrate that, contrary to suggestions early in the COVID-19 pandemic, genomes with frameshifting deletions in ORF7a can persist over long time periods. We suggest that the proliferation of Delta-ORF7aΔ17del genomes was likely a chance founder effect. Nonetheless, the frequency of ORF7a deletions in SARS-CoV-2 genomes worldwide suggests they might have some benefit for virus transmission.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Australia/epidemiología , COVID-19/epidemiología , Brotes de Enfermedades , Pandemias , Estudios Retrospectivos , SARS-CoV-2/genética
4.
Nat Commun ; 14(1): 687, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: covidwho-2235033

RESUMEN

Emerging variants of concern (VOCs) are threatening to limit the effectiveness of SARS-CoV-2 monoclonal antibodies and vaccines currently used in clinical practice; broadly neutralizing antibodies and strategies for their identification are therefore urgently required. Here we demonstrate that broadly neutralizing antibodies can be isolated from peripheral blood mononuclear cells of convalescent patients using SARS-CoV-2 receptor binding domains carrying epitope-specific mutations. This is exemplified by two human antibodies, GAR05, binding to epitope class 1, and GAR12, binding to a new epitope class 6 (located between class 3 and 5). Both antibodies broadly neutralize VOCs, exceeding the potency of the clinical monoclonal sotrovimab (S309) by orders of magnitude. They also provide prophylactic and therapeutic in vivo protection of female hACE2 mice against viral challenge. Our results indicate that exposure to SARS-CoV-2 induces antibodies that maintain broad neutralization against emerging VOCs using two unique strategies: either by targeting the divergent class 1 epitope in a manner resistant to VOCs (ACE2 mimicry, as illustrated by GAR05 and mAbs P2C-1F11/S2K14); or alternatively, by targeting rare and highly conserved epitopes, such as the new class 6 epitope identified here (as illustrated by GAR12). Our results provide guidance for next generation monoclonal antibody development and vaccine design.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Femenino , Animales , Ratones , Anticuerpos ampliamente neutralizantes , Leucocitos Mononucleares , Anticuerpos Antivirales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Epítopos , Glicoproteína de la Espiga del Coronavirus/genética , Pruebas de Neutralización
5.
EBioMedicine ; 84: 104270, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-2031243

RESUMEN

BACKGROUND: Genetically distinct viral variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been recorded since January 2020. The introduction of global vaccine programs has contributed to lower COVID-19 hospitalisation and mortality rates, particularly in developed countries. In late 2021, Omicron BA.1 emerged, with substantially altered genetic differences and clinical effects from other variants of concern. Shortly after dominating global spread in early 2022, BA.1 was supplanted by the genetically distinct Omicron lineage BA.2. A sub-lineage of BA.2, designated BA.5, presently has an outgrowth advantage over BA.2 and other BA.2 sub-lineages. Here we study the neutralisation of Omicron BA.1, BA.2 and BA.5 and pre-Omicron variants using a range of vaccine and convalescent sera and therapeutic monoclonal antibodies using a live virus neutralisation assay. Using primary nasopharyngeal swabs, we also tested the relative fitness of BA.5 compared to pre-Omicron and Omicron viral lineages in their ability to use the ACE2-TMPRSS2 pathway. METHODS: Using low passage clinical isolates of Clade A.2.2, Beta, Delta, BA.1, BA.2 and BA.5, we determined humoral neutralisation in vitro in vaccinated and convalescent cohorts, using concentrated human IgG pooled from thousands of plasma donors, and licensed monoclonal antibody therapies. We then determined infectivity to particle ratios in primary nasopharyngeal samples and expanded low passage isolates in a genetically engineered ACE2/TMPRSS2 cell line in the presence and absence of the TMPRSS2 inhibitor Nafamostat. FINDINGS: Peak responses to 3 doses of BNT162b2 vaccine were associated with a 9-fold reduction in neutralisation for Omicron lineages BA.1, BA.2 and BA.5. Concentrated pooled human IgG from convalescent and vaccinated donors and BNT162b2 vaccination with BA.1 breakthrough infections were associated with greater breadth of neutralisation, although the potency was still reduced 7-fold across all Omicron lineages. Testing of clinical grade antibodies revealed a 14.3-fold reduction using Evusheld and 16.8-fold reduction using Sotrovimab for the BA.5. Whilst the infectivity of BA.1 and BA.2 was attenuated in ACE2/TMPRSS2 entry, BA.5 was observed to be equivalent to that of an early 2020 circulating clade and had greater sensitivity to the TMPRSS2 inhibitor Nafamostat. INTERPRETATION: Observations support all Omicron variants to significantly escape neutralising antibodies across a range of vaccination and/or convalescent responses. Potency of therapeutic monoclonal antibodies is also reduced and differs across Omicron lineages. The key difference of BA.5 from other Omicron sub-variants is the reversion in tropism back to using the well-known ACE2-TMPRSS2 pathway, utilised efficiently by pre-Omicron lineages. Monitoring if these changes influence transmission and/or disease severity will be key for ongoing tracking and management of Omicron waves globally. FUNDING: This work was primarily supported by Australian Medical Foundation research grants MRF2005760 (ST, GM & WDR), MRF2001684 (ADK and ST) and Medical Research Future Fund Antiviral Development Call grant (WDR), Medical Research Future Fund COVID-19 grant (MRFF2001684, ADK & SGT) and the New South Wales Health COVID-19 Research Grants Round 2 (SGT).


Asunto(s)
COVID-19 , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/genética , Anticuerpos Monoclonales Humanizados , Anticuerpos Neutralizantes , Anticuerpos Antivirales/metabolismo , Antivirales , Australia , Vacuna BNT162 , Benzamidinas , COVID-19/terapia , Guanidinas , Humanos , Inmunización Pasiva , Inmunoglobulina G , Inmunoterapia , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tropismo , Sueroterapia para COVID-19
6.
Sci Rep ; 12(1): 13392, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1972655

RESUMEN

Diagnosis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection has primarily been achieved using reverse transcriptase polymerase chain reaction (RT-PCR) for acute infection, and serology for prior infection. Assay with RT-PCR provides data on presence or absence of viral RNA, with no information on virus replication competence, infectivity, or virus characterisation. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is typically not used in clinical virology, despite its potential to provide supplemental data about the presence of viral proteins and thus the potential for replication-competent, transmissible virus. Using the SARS-CoV-2 as a model virus, we developed a fast 'bottom-up' proteomics workflow for discovery of target virus peptides using 'serum-free' culture conditions, providing high coverage of viral proteins without the need for protein or peptide fractionation techniques. This workflow was then applied to Coronaviruses OC43 and 229E, Influenza A/H1N1 and H3N2, Influenza B, and Respiratory Syncytial Viruses A and B. Finally, we created an LC-MS/MS method for targeted detection of the eight-virus panel in clinical specimens, successfully detecting peptides from the SARS-CoV-2 ORF9B and nucleoprotein in RT-PCR positive samples. The method provides specific detection of respiratory viruses from clinical samples containing moderate viral loads and is an important further step to the use of LC-MS/MS in diagnosis of viral infection.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , COVID-19/diagnóstico , Cromatografía Liquida , Humanos , Subtipo H3N2 del Virus de la Influenza A , SARS-CoV-2/genética , Espectrometría de Masas en Tándem , Proteínas Virales
7.
Nat Microbiol ; 7(6): 896-908, 2022 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1873507

RESUMEN

Genetically distinct variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have emerged since the start of the COVID-19 pandemic. Over this period, we developed a rapid platform (R-20) for viral isolation and characterization using primary remnant diagnostic swabs. This, combined with quarantine testing and genomics surveillance, enabled the rapid isolation and characterization of all major SARS-CoV-2 variants circulating in Australia in 2021. Our platform facilitated viral variant isolation, rapid resolution of variant fitness using nasopharyngeal swabs and ranking of evasion of neutralizing antibodies. In late 2021, variant of concern Omicron (B1.1.529) emerged. Using our platform, we detected and characterized SARS-CoV-2 VOC Omicron. We show that Omicron effectively evades neutralization antibodies and has a different entry route that is TMPRSS2-independent. Our low-cost platform is available to all and can detect all variants of SARS-CoV-2 studied so far, with the main limitation being that our platform still requires appropriate biocontainment.


Asunto(s)
COVID-19 , SARS-CoV-2 , Australia , COVID-19/diagnóstico , Humanos , Pandemias , SARS-CoV-2/genética
8.
Drug Metab Dispos ; 50(5): 576-590, 2022 05.
Artículo en Inglés | MEDLINE | ID: covidwho-1832315

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3C-like protease inhibitor PF-07321332 (nirmatrelvir), in combination with ritonavir (Paxlovid), was recently granted emergency use authorization by multiple regulatory agencies for the treatment of coronavirus disease 2019 (COVID-19) in adults and pediatric patients. Disposition studies on nirmatrelvir in animals and in human reagents, which were used to support clinical studies, are described herein. Plasma clearance was moderate in rats (27.2 ml/min per kg) and monkeys (17.1 ml/min per kg), resulting in half-lives of 5.1 and 0.8 hours, respectively. The corresponding oral bioavailability was moderate in rats (34%-50%) and low in monkeys (8.5%), primarily due to oxidative metabolism along the gastrointestinal tract in this species. Nirmatrelvir demonstrated moderate plasma protein binding in rats, monkeys, and humans with mean unbound fractions ranging from 0.310 to 0.478. The metabolism of nirmatrelvir was qualitatively similar in liver microsomes and hepatocytes from rats, monkeys, and humans; prominent metabolites arose via cytochrome P450 (CYP450)-mediated oxidations on the P1 pyrrolidinone ring, P2 6,6-dimethyl-3-azabicyclo[3.1.0]hexane, and the tertiary-butyl group at the P3 position. Reaction phenotyping studies in human liver microsomes revealed that CYP3A4 was primarily responsible (fraction metabolized = 0.99) for the oxidative metabolism of nirmatrelvir. Minor clearance mechanisms involving renal and biliary excretion of unchanged nirmatrelvir were also noted in animals and in sandwich-cultured human hepatocytes. Nirmatrelvir was a reversible and time-dependent inhibitor as well as inducer of CYP3A activity in vitro. First-in-human pharmacokinetic studies have demonstrated a considerable boost in the oral systemic exposure of nirmatrelvir upon coadministration with the CYP3A4 inhibitor ritonavir, consistent with the predominant role of CYP3A4 in nirmatrelvir metabolism. SIGNIFICANCE STATEMENT: The manuscript describes the preclinical disposition, metabolism, and drug-drug interaction potential of PF-07321332 (nirmatrelvir), an orally active peptidomimetic-based inhibitor of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CL protease, which has been granted emergency use authorization by multiple regulatory agencies around the globe for the treatment of coronavirus disease 2019 (COVID-19) in COVID-19-positive adults and pediatric patients who are at high risk for progression to severe COVID-19, including hospitalization or death.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Administración Oral , Animales , Niño , Citocromo P-450 CYP3A/metabolismo , Haplorrinos , Humanos , Lactamas , Leucina , Microsomas Hepáticos/metabolismo , Nitrilos , Péptido Hidrolasas/metabolismo , Prolina , Ratas , Ritonavir/metabolismo
10.
Orthopaedic Journal of Sports Medicine ; 9(7_suppl3), 2021.
Artículo en Inglés | ProQuest Central | ID: covidwho-1685810

RESUMEN

Background: The benefits of sport participation and physical activity within adolescent populations has been well established, including improved physical and psychological health, social functioning, and sleep quality.1-3 However, mandated stay-at-home orders during the COVID-19 pandemic resulted in an abrupt cessation of school and sport participation for many adolescent athletes. This sudden suspension of sports, physical activity and peer/social interaction may have negative implications on adolescent anxiety and fatigue, as well as peer relationships and sleep quality. Purpose: (1) Compare quality of life and sleep quality measures in adolescent athletes during the COVID-19 pandemic to measures obtained 1-2 years earlier. (2) Assess physical activity and social interaction behavior during the two weeks prior to school closure compared to a two-week period during school closure. Methods: Participants first completed Patient Reported Outcome Measurement System (PROMIS) anxiety, fatigue, and peer relationship short forms, and the Pittsburg Sleep Quality Inventory (PSQI) during pre-participation sport physical evaluations (May 2018 or 2019), and again during May or June (2020). Physical activity and social interaction were assessed at the second timepoint by asking participants to retrospectively report behaviors during the two weeks prior to school closure, and during the two weeks preceding questionnaire completion. We compared outcomes using paired samples t-tests (continuous outcome variables) and McNemar’s test (categorical outcome variables). All statistical tests were two-sided and evaluated at a significance level of α = 0.05. Results: A significant portion (92%) of participants (n=39;16.2±0.9 years of age;64% female;499±177 days between assessments) reported sport cessation due to COVID-19 (Table 1). Compared to pre-COVID assessments, participants reported significantly higher anxiety and fatigue scores, and significantly worse sleep quality after school and sport cessation (Figure 1). Physical activity frequency and duration were significantly reduced in the two weeks prior to questionnaire completion compared to the two weeks before sport and school closure (Table 2). No significant difference was found for quality of peer relationships (Figure 1), although characteristics of peer/social interactions differed significantly between timepoints. Conclusion: Following recent stay-at-home orders, high school athletes reported more anxiety and fatigue, worse sleep quality, and less physical activity compared to assessments obtained in the Spring of 2018 or 2019. The abrupt cessation of school and sport participation due to COVID-19, in combination with other life factors, likely contributed to reductions in physical activity, worse sleep quality, changes in social interaction, elevated levels of anxiety, and increased fatigue among high school athletes. References: Snyder AR, Martinez JC, Bay RC, Parsons JT, Sauers EL, Valovich McLeod TC. Health-related quality of life differs between adolescent athletes and adolescent nonathletes. J Sport Rehabil. 2010;19(3):237-248. doi:10.1123/jsr.19.3.237 Eime RM, Young JA, Harvey JT, Charity MJ, Payne WR. A systematic review of the psychological and social benefits of participation in sport for children and adolescents: informing development of a conceptual model of health through sport. Int J Behav Nutr Phys Act. 2013;10:98. Published 2013 Aug 15. doi:10.1186/1479-5868-10-98 Kredlow MA, Capozzoli MC, Hearon BA, Calkins AW, Otto MW. The effects of physical activity on sleep: a meta-analytic review. J Behav Med. 2015;38(3):427-449. doi:10.1007/s10865-015-9617-6 Tables/Figures:

12.
Immunity ; 54(12): 2908-2921.e6, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1521063

RESUMEN

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Second-generation vaccines will need to elicit neutralizing antibodies against sites that are evolutionarily conserved across the sarbecovirus subgenus. Here, we immunized mice containing a human antibody repertoire with diverse sarbecovirus receptor-binding domains (RBDs) to identify antibodies targeting conserved sites of vulnerability. Antibodies with broad reactivity against diverse clade B RBDs targeting the conserved class 4 epitope, with recurring IGHV/IGKV pairs, were readily elicited but were non-neutralizing. However, rare class 4 antibodies binding this conserved RBD supersite showed potent neutralization of SARS-CoV-2 and all variants of concern. Structural analysis revealed that the neutralizing ability of cross-reactive antibodies was reserved only for those with an elongated CDRH3 that extends the antiparallel beta-sheet RBD core and orients the antibody light chain to obstruct ACE2-RBD interactions. These results identify a structurally defined pathway for vaccine strategies eliciting escape-resistant SARS-CoV-2 neutralizing antibodies.


Asunto(s)
Betacoronavirus/fisiología , Vacunas contra la COVID-19/inmunología , Infecciones por Coronavirus/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Secuencia Conservada/genética , Evolución Molecular , Humanos , Inmunización , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Unión Proteica , Dominios Proteicos/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Desarrollo de Vacunas
13.
Immunity ; 2021.
Artículo en Inglés | EuropePMC | ID: covidwho-1489418

RESUMEN

Viral mutations are an emerging concern in reducing SARS-CoV-2 vaccination efficacy. Burnett et al. immunized humanized mice with different diverse sarbecovirus RBDs to elicit antibodies targeting conserved sites. Non-neutralizing cross-reactive antibodies targeting the conserved class 4 epitope were readily elicited. Neutralizing ability was reserved only for antibodies binding this conserved supersite through an elongated CDRH3 that obstructed ACE2-RBD interactions.

14.
PLoS Med ; 18(7): e1003656, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1298076

RESUMEN

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) antibody neutralization response and its evasion by emerging viral variants and variant of concern (VOC) are unknown, but critical to understand reinfection risk and breakthrough infection following vaccination. Antibody immunoreactivity against SARS-CoV-2 antigens and Spike variants, inhibition of Spike-driven virus-cell fusion, and infectious SARS-CoV-2 neutralization were characterized in 807 serial samples from 233 reverse transcription polymerase chain reaction (RT-PCR)-confirmed Coronavirus Disease 2019 (COVID-19) individuals with detailed demographics and followed up to 7 months. A broad and sustained polyantigenic immunoreactivity against SARS-CoV-2 Spike, Membrane, and Nucleocapsid proteins, along with high viral neutralization, was associated with COVID-19 severity. A subgroup of "high responders" maintained high neutralizing responses over time, representing ideal convalescent plasma donors. Antibodies generated against SARS-CoV-2 during the first COVID-19 wave had reduced immunoreactivity and neutralization potency to emerging Spike variants and VOC. Accurate monitoring of SARS-CoV-2 antibody responses would be essential for selection of optimal responders and vaccine monitoring and design.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/patogenicidad , Adulto , Anticuerpos Antivirales/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Nucleocápside/inmunología , SARS-CoV-2/inmunología
15.
MAbs ; 13(1): 1922134, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1240862

RESUMEN

Antibodies against coronavirus spike protein potently protect against infection and disease, but whether such protection can be extended to variant coronaviruses is unclear. This is exemplified by a set of iconic and well-characterized monoclonal antibodies developed after the 2003 SARS outbreak, including mAbs m396, CR3022, CR3014 and 80R, which potently neutralize SARS-CoV-1, but not SARS-CoV-2. Here, we explore antibody engineering strategies to change and broaden their specificity, enabling nanomolar binding and potent neutralization of SARS-CoV-2. Intriguingly, while many of the matured clones maintained specificity of the parental antibody, new specificities were also observed, which was further confirmed by X-ray crystallography and cryo-electron microscopy, indicating that a limited set of VH antibody domains can give rise to variants targeting diverse epitopes, when paired with a diverse VL repertoire. Our findings open up over 15 years of antibody development efforts against SARS-CoV-1 to the SARS-CoV-2 field and outline general principles for the maturation of antibody specificity against emerging viruses.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Especificidad de Anticuerpos , Reacciones Cruzadas , Humanos , Mutagénesis Sitio-Dirigida
16.
Viruses ; 13(2)2021 02 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1063429

RESUMEN

Serological testing for SARS-CoV-2-specific antibodies provides important research and diagnostic information relating to COVID-19 prevalence, incidence and host immune response. A greater understanding of the relationship between functionally neutralising antibodies detected using microneutralisation assays and binding antibodies detected using scalable enzyme immunoassays (EIA) is needed in order to address protective immunity post-infection or vaccination, and assess EIA suitability as a surrogate test for screening of convalescent plasma donors. We assessed whether neutralising antibody titres correlated with signal cut-off ratios in five commercially available EIAs, and one in-house assay based on expressed spike protein targets. Sera from recovered patients or convalescent plasma donors who reported laboratory-confirmed SARS-CoV-2 infection (n = 200), and negative control sera collected prior to the COVID-19 pandemic (n = 100), were assessed in parallel. Performance was assessed by calculating EIA sensitivity and specificity with reference to microneutralisation. Neutralising antibodies were detected in 166 (83%) samples. Compared with this, the most sensitive EIAs were the Cobas Elecsys Anti-SARS-CoV-2 (98%) and Vitros Immunodiagnostic Anti-SARS-CoV-2 (100%), which detect total antibody targeting the N and S1 antigens, respectively. The assay with the best quantitative relationship with microneutralisation was the Euroimmun IgG. These results suggest the marker used (total Ab vs. IgG vs. IgA) and the target antigen are important determinants of assay performance. The strong correlation between microneutralisation and some commercially available assays demonstrates their potential for clinical and research use in assessing protection following infection or vaccination, and use as a surrogate test to assess donor suitability for convalescent plasma donation.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19 , COVID-19/inmunología , Ensayo de Inmunoadsorción Enzimática , Pruebas de Neutralización , SARS-CoV-2/inmunología , COVID-19/diagnóstico , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Curva ROC , Sensibilidad y Especificidad
17.
Pathology ; 52(7): 760-763, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1044263

RESUMEN

Isolation of the new pandemic virus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for diagnostic and research purposes including assessment of novel therapeutics. Several primary and continuous cell lines are currently used, and new organoid and engineered cell lines are being developed for improved investigation and understanding of the human immune response to this virus. Here we review the growth of SARS-CoV-2 in reference standard cell lines, engineered cell lines and new developments in this field.


Asunto(s)
Prueba de COVID-19/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Técnicas de Cultivo de Célula , Línea Celular , Humanos
18.
Viruses ; 12(11)2020 10 23.
Artículo en Inglés | MEDLINE | ID: covidwho-895403

RESUMEN

Critical to facilitating SARS-CoV-2 point-of-care (POC) testing is assurance that viruses present in specimens are inactivated onsite prior to processing. Here, we conducted experiments to determine the virucidal activity of commercially available Viral Transport Mediums (VTMs) to inactivate SARS-CoV-2. Independent testing methods for viral inactivation testing were applied, including a previously described World Health Organization (WHO) protocol, in addition to a buffer exchange method where the virus is physically separated from the VTM post exposure. The latter method enables sensitive detection of viral viability at higher viral titre when incubated with VTM. We demonstrate that VTM formulations, Primestore® Molecular Transport Medium (MTM) and COPAN eNAT™ completely inactivate high-titre SARS-CoV-2 virus (>1 × 107 copies/mL) and are compatible with POC processing. Furthermore, full viral inactivation was rapidly achieved in as little as 2 min of VTM exposure. We conclude that adding certain VTM formulations as a first step post specimen collection will render SARS-CoV-2 non-infectious for transport, or for further in-field POC molecular testing using rapid turnaround GeneXpert platforms or equivalent.


Asunto(s)
Betacoronavirus/aislamiento & purificación , Pruebas en el Punto de Atención , Manejo de Especímenes , Inactivación de Virus , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/diagnóstico , Medios de Cultivo/análisis , Medios de Cultivo/farmacología , Humanos , Pruebas en el Punto de Atención/normas , SARS-CoV-2 , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Carga Viral/efectos de los fármacos , Inactivación de Virus/efectos de los fármacos
19.
J Neurointerv Surg ; 12(12): 1153-1156, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-840962

RESUMEN

BACKGROUND: The COVID-19 pandemic has changed the way medicine is practiced, including the implementation of virtual care in many specialties. In the field of interventional neuroradiology (INR), virtual clinics are an uncommon practice with minimal literature to support its use. Our objective was to report prospective, single-centre data regarding patient and physician experience with virtual INR clinics for routine follow-up appointments. METHODS: We surveyed all patients that participated in a virtual INR clinic follow-up appointment at our hospital over a 3 month period. Information gathered included length of appointment delays (ie, wait times), length of appointment times, overall satisfaction, and perceived safety metrics. A survey was also sent out to all physicians who participated in virtual clinics with similar questions. RESULTS: 118/122 patients and 6/6 physicians completed the survey. Wait times before previous in-person appointments were perceived to be much longer than virtual appointments, whereas in-person appointment times were longer. 112/118 (94.9%) patients and 4/6 (67%) physicians reported general satisfaction with their virtual clinic experience. There were 8/118 patients who felt their conditions could not be safely assessed virtually, compared with 1/6 (17%) physicians. Lastly, 72.2% of patients reported that they would prefer virtual or telephone visits in the future for non-urgent follow-up, and 5/6 (83%) of physicians reported the same. CONCLUSION: Virtual INR clinics are more efficient and are preferred among patients and physicians for non-urgent follow-up appointments. Our study demonstrates the feasibility of a virtual platform for INR care, which could be sustainable for future practice.


Asunto(s)
Citas y Horarios , Betacoronavirus , Infecciones por Coronavirus/epidemiología , Neurorradiografía/tendencias , Satisfacción del Paciente , Neumonía Viral/epidemiología , Encuestas y Cuestionarios , Adulto , Anciano , COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neurorradiografía/métodos , Pandemias/prevención & control , Médicos/tendencias , Estudios Prospectivos , SARS-CoV-2
20.
J Paediatr Child Health ; 56(12): 1872-1874, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-696895

RESUMEN

AIM: As the COVID-19 pandemic evolves, human milk banks world-wide continue to provide donor human milk to vulnerable infants who lack access to mother's own milk. Under these circumstances, ensuring the safety of donor human milk is paramount, as the risk of vertical transmission of SARS-CoV-2 is not fully understood. Here, we investigate the inactivation of SARS-CoV-2 in human milk by pasteurisation and the stability of SARS-CoV-2 in human milk under cold storage. METHODS: SARS-CoV-2 was experimentally inoculated into human milk samples from healthy donors or into a control medium. Triplicates of each sample were layered onto uninfected cells after Holder pasteurisation (63°C for 30 min), heating to 56°C for 30 min, or after 48 h of storage at 4°C or -30°C. Infectious titres of virus were determined at 72 h post-infection by endpoint titration. RESULTS: Following heating to 63°C or 56°C for 30 min, replication competent (i.e. live) SARS-CoV-2 was undetected in both human milk and the control medium. Cold storage of SARS-CoV-2 in human milk (either at 4°C or -30°C) did not significantly impact infectious viral load over a 48 h period. CONCLUSION: SARS-CoV-2 is effectively inactivated by Holder pasteurisation, suggesting that existing milk bank processes will effectively mitigate the risk of transmission of SARS-COV-2 to vulnerable infants through pasteurised donor human milk. The demonstrated stability of SARS-CoV-2 in refrigerated or frozen human milk may assist in the development of guidelines around safe expressing and storing of milk from COVID-19 infected mothers.


Asunto(s)
COVID-19 , Frío , Leche Humana/virología , Pasteurización , SARS-CoV-2 , Inactivación de Virus , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA